Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle

نویسندگان

  • Joel Fine
  • Dmitri Panov
چکیده

We use hyperbolic geometry to construct simply-connected symplectic or complex manifolds with trivial canonical bundle and with no compatible Kähler structure. We start with the desingularisations of the quadric cone in C: the smoothing is a natural S-bundle over H, its holomorphic geometry is determined by the hyperbolic metric; the small-resolution is a natural S-bundle over H with symplectic geometry determined by the metric. Using hyperbolic geometry, we find orbifold quotients with trivial canonical bundle; smooth examples are produced via crepant resolutions. In particular, we find the first example of a simply-connected non-Kähler symplectic manifold with c1 = 0 as well as infinitely many distinct complex structures on 2(S × S)#(S × S) with trivial canonical bundle. We also explain how an analogous construction for hyperbolic manifolds in higher dimensions gives symplectic non-Kähler “Fano” manifolds of dimension 12 and higher.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical volume forms on compact Kähler manifolds

We construct a canonical singular hermitian metric with semipositive curvature current on the canonical line bundle of a compact Kähler manifold with pseudoeffective canonical bundle. The method of the construction is a modification of the one in [T]. MSC: 14J15,14J40, 32J18

متن کامل

Applications of the Seiberg-Witten equations to the Differential Geometry of non-compact Kähler manifolds

of the Dissertation Applications of the Seiberg-Witten equations to the Differential Geometry of non-compact Kähler manifolds by Ilya Elson Doctor of Philosophy in Mathematics Stony Brook University 2014 Soon after the introduction of the Seiberg-Witten equations, and their magnificent application to the differential topology of 4manifolds, LeBrun [LeB95a] used these equations to study differen...

متن کامل

Degeneration of Kähler-Einstein Manifolds II: The Toroidal Case

This paper is a sequel of [8]. In algebraic geometry, when discussing the compactification of the moduli space of complex manifold X with ample canonical bundle KX , it is necessary to consider holomorphic degeneration family π : X → B, where Xt = π(t) are smooth for t 6= 0, X and X0 are QGorenstein, such that the canonical bundle of Xt for t 6= 0 and the dualizing sheaf of X0 are ample. We wil...

متن کامل

The Monopole Equations and J-holomorphic Curves on Weakly Convex Almost Kähler 4-manifolds

We prove that a weakly convex almost Kähler 4-manifold contains a compact, non-constant J-holomorphic curve if the corresponding monopole invariant is not zero and if the corresponding line bundle is non-trivial.

متن کامل

Fibrations with Constant Scalar Curvature Kähler Metrics and the Cm-line Bundle

Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009